Doing General prep distance training better

Coach Barry Haworth

All training plans begin with the following:

1. Purpose of training (season goal)
2. Competitive path
3. Individual qualities of your athletes

All training plans consist of various segments/parts (periodization)
** Here are the options:
No basic plan - just wing it
Random plan - wing it with dice
Predetermined plan

Periodizing a season allows for more purposeful training

Different approaches to periodization

Example 1	Example 2	Example 3
Base phase	Base phase	Base phase
Preparation phase	Build phase	Strength phase (lactate threshold)
Peak phase	Peak phase	Speed phase (VO2max)
	Taper phase	Taper phase
	Race	Recovery phase
	Recovery phase	

A standard periodization approach is as follows:
General Preparation phase - introduction of aerobic training
Specific Preparation phase - introduction of anaerobic work
Pre-Competition phase - continued application of all elements of training
Competition phase - transition to higher quality workouts with longer rest
Some terminology:
Macrocycle: season-long training plan
e.g. Cross Country season training plan

Mesocycle: training block with a specific developmental goal e.g. General Prep

Microcycle: period of training that contains the elements you use to achieve a developmental goal (e.g. if the developmental goal is developing anaerobic ability, the microcycle may include anaerobic workouts at various paces, recovery runs, sprint work). These elements are then effectively repeated in a way that helps us achieve the developmental goal of a particular phase.

Example 1

$1 \times$ tempo, $1 \times$ long run, 2-3 x easy, $1 \times$ fartlek
Alternate weeks $1 \times$ shorter reps @ VO2 max, longer reps @ LT-CV-VO2 max

Example 2

Distance w/ long run
Weeks 2 \& 5 include 5 k race (to get paces)
Week 5 include $1 \times$ LT run

Example 3

$4 \times$ distance ($1 \times$ strides, $1 \times$ hills), $1 \times$ long run
Week 1: 1×2 mi time trial
Week 2: $1 \times$ fartlek
Week 3: $1 \times$ long hills
Week 4: $1 \times$ progression run
Week 5: $1 \times$ fartlek, replace $1 \times$ distance $w / 1 \times$ progression run
Week 6: 1 x workout @ 5 k pace, replace 1 x distance w/ 1 x progression run

Example 4

Distance w/ steady state, fartlek, long runs
Reduce a bit every 3rd/4th week

Example 5

Distance + strides - much less structure, runners set pace

Example 6

Weeks 1-4: $1 \times$ distance, $2 \times$ long run, $1 \times$ distance + hills, $2 \times$ rest/crosstrain
Week 5: $2 \times$ distance, $1 \times$ long run, $1 \times$ distance + hills
Week 6: 2 x distance, 1 x long run, $1 \times$ distance + hills, $1 \times$ tempo

Example 7

Typical week: $1 \times$ long run, $1 \times$ hills, $1 \times$ tempo, $3 \times$ distance ($1 \times$ strides)

Example 8

1 x easy, $3 \times$ steady, $1 \times$ hills, $1 \times$ tempo
Weeks 3 \& 5 - replace tempo w/ 1 mile time trial
Week 5 - replace hills w/ fartlek

Example 9

$4 \times$ easy, $1 \times$ long run, $1 \times$ hills, $1 \times$ fartlek

Example 10

Weeks 1-4: $1 \times$ long run, $1 \times$ faster distance, 3-4 x distance
Weeks 5-6: $1 \times$ long run, 3-4 x distance, $1 \times$ fartlek or hills, $1 \times$ crosstraining

Types of running

Aerobic running

Aerobic running occurs when your body has enough oxygen to fuel your body, comparable to running easier at a conversational pace

Fueled through burning of carbs and fats
Byproducts of aerobic training: carbon dioxide and water, which are expelled by breathing

Aerobic training requires 20-24 weeks to make proper structural changes
(size of heart, capillaries \& delivery system, blood volume)

If full development of the aerobic system takes 20-24 weeks, then we need to start developing that system within the General Prep phase.

Anaerobic running

Anaerobic running occurs when your body does not have enough oxygen to fuel your body, comparable to running at a harder pace, where talking is more difficult

Fueled through burning of carbs (process called anaerobic glycolysis) Primary byproducts of anaerobic training: lactic acid and phosphates

- Lactic acid = lactate and hydrogen ions

Anaerobic training requires 9-11 weeks to make proper chemical changes (biochemistry of body - ability to buffer $\mathrm{H}+$ ions and other byproducts of anaerobic glycolysis)

If full development of the anaerobic system takes 9-11 weeks, then we don't need to start developing that system within the General Prep phase.

Max velocity training carries more subtle, long-lasting benefits that can be developed yearround. One purpose of the General Prep phase is to also prepare athletes for the anaerobic training that comes within the next phase of training.

Benefits from running fast:
(1) Improved speed reserve : "ASR is defined as the difference between an athlete's absolute maximum velocity and their maximum aerobic speed." (Scott Christensen)
(2) Injury resistance: "Many neuromuscular exercises employ large ranges of motions and high intensities. The combination of these two things allows for a varied stimulus on muscles. Stressing the body in these different ways from time to time can help prevent overuse injuries." (Jeff Boelé)
(3) Improved movement patterns: The various drills and exercises associated with incorporating sprint training into practice allows athletes an opportunity to focus on their form and work on form-related issues. It's much easier for younger athletes to focus on proper form while running over shorter distances.

General Prep basics

Distance performance is primarily based on VO2max and efficiency/running economy (where VO2max = volume of oxygen a runner can process)
(1) Developing VO2max: we improve VO2max by running, but the biggest improvements come from running at VO2max pace ($3 \mathrm{k}-2$ mile race pace). Slower running will still improve VO2max, but the process is slower (i.e. full development with just distance runs might be closer to 25-30 weeks).

Training:	Pace	Workout Distance
Recovery run	$60-65 \%$ of VO2 max pace	$30-50 \mathrm{~min}$
Long runs	70% of VO2 max pace	$50 \mathrm{~min}-2 \mathrm{hrs}$
Intermediate runs	$70-80 \%$ of VO2 max pace	
Tempo runs	$80-88 \%$ of VO2 max pace	$20-30 \mathrm{~min}$
Critical value runs	$88-90 \%$ of VO2 max pace	
VO2 max runs	$97-101 \%$ of VO2 max pace	$600-3200 \mathrm{~m}$

The continuum of training thresholds

Training Thresholds

Taken from the USATF Cross Country Coaching education handout
(2) Developing efficiency: we improve running economy by running at faster paces (e.g. interval work, sprint work).

Max Speed training involves the central nervous system, and is therefore best developed by running fast over shorter distances at the beginning of practice, maintaining low volumes of work with full recovery between efforts.
I.e., training which does not allow for full recovery, which maintains higher volumes of work, and involves something fast either during or after a workout is anaerobic training.

Training:	Pace	Workout Distance
Max Speed	${ }^{\sim} 114 \%$ of 400 m race pace	$30-70 \mathrm{~m}(6-10 \mathrm{sec})$
Speed Endurance	${ }^{\sim} 105 \%$ of 400 m race pace	$60-150 \mathrm{~m}(10-25 \mathrm{sec})$
Special Endurance 1	${ }^{\sim} 95 \%$ of 400 m race pace	$150-300 \mathrm{~m}(25-50 \mathrm{sec})$
Special Endurance 2	$\sim 95 \%$ of 800 m race pace	$300-600 \mathrm{~m}(45 \mathrm{sec}-2 \mathrm{~min})$

Energy systems vs duration of maximal activity

Taken from https://blog.athletigen.com/your-endurance-thresholds-anaerobic-vs-aerobic

Final concerns

Sequencing:

- 24 hrs: typical long run, hills, recovery runs, moderate tempo run, alactic work
- 48 hrs: races, long run +, SE1, SE2, above moderate tempo runs, VO2max workouts
- 72 hrs: races in the heat, very hard anaerobic work, hard tempo, longer workouts

Strength training:

Strength training prepares athletes for the higher intensity, greater volume coming in the Specific Prep and Pre-Competitive phases
** equivalent of strengthening the chassis of a race car when you put in a bigger motor

Types of strength training:

- Injury prevention - fixing muscular asymmetries, activating muscles, strengthening muscles that do not get used in a typical school day (e.g. hip flexors - as a result of sitting all day)
- General strength - improved muscular strength designed to improve power output and improve running economy
- Core strength
- Exercises which help with resisting movement (e.g. planks) Improving your body's ability to resist movement allows for improved movement patterns and greater efficiency/running economy
- Exercises which initiate movement (e.g. crunches)

These exercises can serve as a complement to what we seek to achieve with planks and other similar core work

Putting it all together

Aerobic Development

A standard progression with aerobic development
** weeks 1-2: running distance runs (typically aimed at recovery-aerobic threshold pace)
** weeks 3-6: transition to 1-2 days per week of VO2 max and tempo training
Determining faster paces:
** Time trial (1 mile or 2 miles)
** Effort scale (pace based on perceived effort during the workout)

Cross Country vs Track

** during Cross Country, we rely on time trials to set faster aerobic paces
** during Track, we typically run in early season indoor meets to get aerobic pacing info

Speed Development

A standard progression with speed development
** weeks 1-3: running strides after distance runs (typically progressing from 75\% to 95-100\%)
** weeks 4-6: add 1-2 days per week of short sprints before distance runs/workouts
Hill work (hill sprints) - a complement to sprint development
** Hill training reinforces good sprint mechanics
** Hill training is an excellent conditioning tool
** Hill training helps runners develop strength

Cross Country vs Track

** during Cross Country, we typically sprint on grass and in training flats, typically later start with sprinting before practice
** during Track, we start out on fitness path or grass, progress to sprinting on the track or indoor surface - always in training flats, and switch to sprinting in spikes by mid-March

Developing Strength

A standard approach to strength training is 1-2 days of strength work with 2-3 days of core
** various considerations include: progression, availability of facilities, etc

Cross Country vs Track

** during Cross Country, we do more body-weight resistance exercises and general strength
** during Track, we have easier access to weights, so do a wider variety of exercises

Injury Prevention

Some thoughts:

- Cross Country: more typical to get brand new kids during the Summer
- Track: Winter months can be the Bermuda Triangle of training
- To decrease the probability of injury, we transition recovery days into crosstraining days (aerobic development w/o the stress)

Our program:

General Prep Cross Country: typically June-July, 7 day microcycles
General Prep Track: typically December-January, 7 day microcycles
Our developmental goals during General Prep:

- Aerobic Development (primary goal)
- we train at several different aerobic paces
- Speed Development
- we incorporate sprinting into practice
- we incorporate shorter hill sprints/running (note that hills could also be characterized as strength development)
- Strength Development
- we implement a strength routine and core routine
- Injury Prevention
- we implement a Winter Track crosstraining plan
- we incorporate specific exercises into our warmup, warmdown, etc

Sample Training program for Weeks 1-6

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Week 1/ Microcycle 1	35 min run	45 min run	35 min run (recovery)	45 min run	15 min run + Hill repeats +15 min run	rest	55 min run
Week 2/ Microcycle 2	35 min run	50 min run	$\begin{aligned} & 35 \text { min run } \\ & + \text { strides } \\ & \text { (recovery) } \end{aligned}$	60 min run	15 min run + Hill repeats +15 min run	rest	$\begin{gathered} 45 \text { min run } \\ + \text { strides } \end{gathered}$
Week 3/ Microcycle 3	$\begin{aligned} & 70 \text { min run } \\ & + \text { strides } \end{aligned}$	10 min run + tempo run	45 min run (recovery)	60 min run	15 min run + Hill repeats +15 min run	rest	$\begin{aligned} & 10 \text { min run } \\ & + \text { strides/sprints } \\ & + \text { time trial } \end{aligned}$
Week 4/ Microcycle 4	$\begin{aligned} & 70 \text { min run } \\ & + \text { strides } \end{aligned}$	$\begin{gathered} 10 \mathrm{~min} \text { run } \\ + \text { strides/sprints } \\ +800 \mathrm{~s} @ \\ \text { VO2max pace } \end{gathered}$	45 min run (recovery)	$\begin{aligned} & 50 \text { min run } \\ & + \text { strides } \end{aligned}$	$\begin{aligned} & \quad 15 \text { min run } \\ & + \text { Hill repeats } \\ & +15 \text { min run } \end{aligned}$	rest	60 min run
Week 5/ Microcycle 5	$\begin{gathered} 80 \text { min run } \\ + \text { strides } \end{gathered}$	$\begin{aligned} & 10 \text { min run } \\ & + \text { strides/sprints } \\ & + \text { tempo run } \end{aligned}$	45 min run (recovery)	$\begin{aligned} & 60 \text { min run } \\ & + \text { strides } \end{aligned}$	15 min run + Hill repeats +15 min run	rest	60 min run
Week $6 /$ Microcycle 6	$\begin{aligned} & 80 \text { min run } \\ & + \text { strides } \end{aligned}$	$\begin{gathered} 15 \text { min run } \\ +400 \mathrm{~s} \\ @ \text { LT pace } \\ +15 \text { min run } \end{gathered}$	35 min run (recovery)	$\begin{aligned} & 60 \text { min run } \\ & + \text { strides } \end{aligned}$	$\begin{aligned} & 20 \text { min run } \\ & + \text { strides } / \text { sprints } \\ & +1200 \text { s @ } \\ & \text { VO2max pace } \\ & +20 \text { min run } \end{aligned}$	rest	70 min run

